Content Emphasized in Grade 3 In *Everyday Mathematics*, children develop a broad background by learning concepts and skills in all these six content strands. The third-grade program emphasizes the following content. ## **Number and Numeration** Counting patterns; recognizing place value in whole numbers and decimals; reading and writing whole numbers through 1,000,000; using fractions, decimals, and integers # **Operations and Computation** Practicing multiplication and division facts extended to multidigit problems; working with properties; computing with fractions and money ## **Data and Chance** Collecting, organizing, and displaying data using tables, charts, and graphs; using basic probability terms # **Measurement and Reference Frames** Recording equivalent units of length; recognizing appropriate units of measure for various items; finding the areas of rectangles by counting squares; using multiplication arrays, coordinate grids, thermometers, clocks, calendars, and map scales to estimate distances #### Geometry Exploring 2-dimensional and 3-dimensional shapes and other geometric concepts ## Patterns, Functions, and Algebra Finding patterns on the number grid; solving Frames-and-Arrows puzzles having two rules; completing variations of "What's My Rule?" activities; exploring the relationship between multiplication and division; using parentheses in writing number models; naming missing parts of number models For a lesson-by-lesson view of the way children learn this content, see the Grade 3 Content by Strand Poster. # **Do-Anytime Activities for Grade 3** These activities are easy and fun to do with your child at home, and they will reinforce the skills and concepts your child is learning in school. | Unit 1 | Draw an analog clock face with the hour and minute hands showing 8 o'clock. Ask your child to write the time shown. Repeat with other times such as 3:30, 11:45, and 7:10. If you don't want to draw a clock face each time, use craft sticks or toothpicks for the hour and minute hands. Make combinations of bills and coins using money from your wallet or a piggy bank. Have your child write the amount shown using a dollar sign and a decimal point. For example, suggest 4 dollar bills, 3 dimes, and 2 pennies. Your child would write \$4.32. | |--------|--| | Unit 2 | • Practice addition and subtraction fact extensions, for example, $6 + 7 = 13$; $60 + 70 = 130$; $600 + 700 = 1{,}300$. | | | Use Fact Triangles to practice multiplication by covering the
product. Practice division by covering one of the other numbers. Make this brief and fun. | | Unit 3 | Measure various items with your child with each of you using
personal measures, such as paces or hand spans. Discuss why, for
example, the width of your living room is only 15 of your paces but
25 of your child's. Talk about why standard units are useful. | | | Draw three different polygons such as a square, a rectangle, and a
triangle. Ask your child to estimate which has the largest and
which one has the smallest perimeter. Then, help your child
measure the sides with a ruler and determine the exact perimeter
of each polygon. Compare your child's estimates with the actual
perimeters. | | Unit 4 | Ask questions that involve multiples of equal groups. For example,
say "Pencils are packaged in boxes of 8. There are 3 boxes. How
many pencils are there?" | | | Ask questions that involve equal sharing. For example, say "Seven
children share 49 baseball cards. How many cards does each child
get? How many cards are left over?" | | Unit 5 | • Write decimals for your child to read aloud, such as 0.32 (thirty-two hundredths) or 0.9 (nine-tenths). | | | Write down two 4- or 5-digit numbers. Ask your child to tell which is larger and explain why. Try a few more and then switch roles. | | Unit 6 | Search for geometric figures with your child. Identify figures by name, if possible, and talk about their characteristics. For example, a stop sign is an octagon, with 8 sides and 8 angles. A brick is a rectangular prism, where all faces are rectangles. Have your child use a protractor to draw a design using only acute angles (less than 90°). Other designs can be made using obtuse angles (between 90° and 180°) and right angles (90°). | |---------|--| | Unit 7 | ♦ Have your child write three different number sentences using parentheses that equal 16. Some examples are $1 \times (32 - 16)$, $4 + 4 + (8 \div 2) + (2 \times 2)$, and $(16 \div 2 + 2) + (3 \times 2)$. | | | Provide your child with problems with missing factors for
multiplication practice. For example, ask "6 times what number
equals 18?" | | Unit 8 | Help your child find fractions in the everyday world—in
advertisements, on measuring tools, in recipes, and so on. | | | • Have your child trace around an object such as a deck of cards, a box, a plate, a cup, a can, and so on. Divide the figure equally into 4 parts. Ask your child to color ³ / ₄ of the shape. Try a few more using different figures and dividing them into different fractional parts. Instead of tracing around an object, draw figures such as squares, rectangles, and circles. | | Unit 9 | • Ask your child how many 10s are in 30, 50, 100, 1,000, and so on. | | | ◆ Take out different objects such as buttons, counters, pennies, and paper clips. Divide them into 3 equal groups. How many are in each group? How many are left over? | | Unit 10 | • Review equivalent names for measurements. For example, ask "How many cups are in a pint?" To test it out, count how many cups of water a pint container will hold. | | | • Name items around the house that weigh less than 5 pounds, 10 pounds, and 20 pounds. If you have a scale, place the items on the scale to check your guesses. | | Unit 11 | • Use the weather as a springboard to discuss probability. Begin by noting the chance (percentage) for rain, and then ask your child if it seems likely or unlikely that it will rain. | | | • Make a number line from -6 through 6, leaving off some of the
numbers. Ask your child to fill in the missing numbers. Try
another number line with a different range of numbers and blank
spaces. Then switch roles, and have your child create a number
line, leaving off some labels for you to fill in. |